

National Snow and Ice Data Center

Supporting Cryospheric Research Since 1976

Review of Polar Data Community Activities

Peter L. Pulsifer

National Snow and Ice Data Center University of Colorado Boulder

Goals and Objectives of the Polar Data Planning Summit

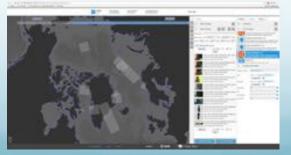
The Vision

http://nsidc.org/acadis/search/ "Common access, Single Window" to discuss and access data through information technology

High quality, ethically open data preserved over time

(sustainability)

Data as a service


Pulsifer xxet al. 2014

- Interoperability (share data among various information systems in a useful and meaningful manner)
- Inclusive of Indigenous and local perspectives

Access to big data and powerful analytical tools (e.g. cloud

platforms)

Cost effective!

Screen capture complements of Polar View

http://eloka-arctic.org/communities/yupik/atlas/index.html

PDPS

- Bring polar data coordinating bodies and other interested orgs and people together
- Provide a space for detailed technical discussion and architecture-level planning
- Establish a plan for community focus areas and future coordination

Recent History of Polar Data

Arctic Data: Opportunities, Challenges and the Way Forward

Data Scir

NAL POLAR D

J Friddell Nickels¹⁰, C ity of Colorado

Mohrie place 1, University of I

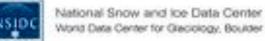
wisc institute. To versity, Quebec

march, Texal, 7 versity of Colors

Taxos

See http://arcticdc.org/meetings/adc-meetings/interoperability-workshop for links to resources

Glaciological Data Report GD-33


May 2006

International Polar Year Data Management Workshop, 3-4 March 2006

Planning the legacy of Phy 2007-2008.

POLAR CONNECTIONS

REPORT OF THE POLAR CONNECTIONS INTEROPERABILITY WORKSHOP AND ASSESSMENT PROCESS

7-10 NOVEMBER 2016

Editors: Peter L. Pulsifer, Julie Friddell, Pip Bricher, Øystein Goday, Colleen Strawhacker, David Arthurs, Lynn Yarmey, Andrew Fleming

Soneration of Observing Systems for the Polar

International Facus, or Data Activities - Global Data Systems

Communiqué

ecommendations & Observations Arising From

the "International Puter Data Forum"

Workshop on Arctic Data Coordination at IPY 2012, Montre

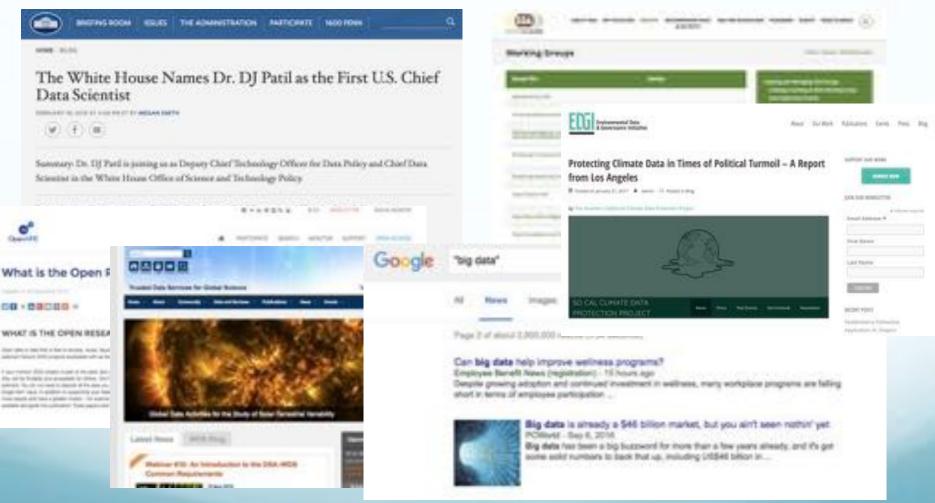
o to begin to design an Arolic Data Coordination Network will be held at IPY 2012, Months

November to the

Open Geospatial Consor Request for Information

Arctic Spatial Data

Statement of Principles and Practices for Arctic Data Management


access to all data recovery to produce those enable. Data shall be preserved, accessible, and and it accordings with spentific name of his attribution and use.

For this and, IASC Council approver, the following actions:

1. Endocument of the Stytement of Principles and Praction for Actic Sale

Opportunities

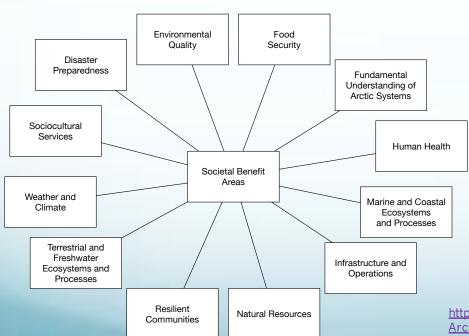
Data is Big

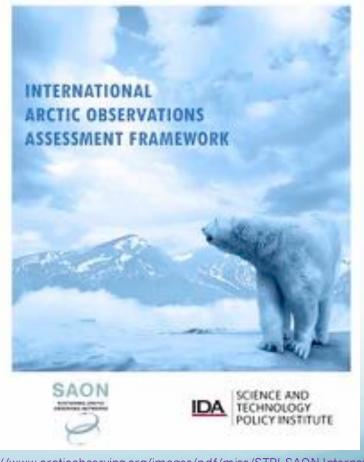
https://obamawhitehouse.archives.gov/blog/2015/02/18/white-house-names-dr-dj-patil-first-us-chief-data-scientist

https://www.openaire.eu/opendatapilot

https://www.icsu-wds.org/ https://www.rd-alliance.org/

Observations, Data and Societal Benefit


Proposal by Finland for a new project:


Arctic Observation Value project - assessment for physical atmospheric and oceanic variables

Background and Mativation

Arctic monitoring is largely not sustained for a long term. The first Arctic Science Ministerial declaration and the Arctic Councils Fairhanks declaration are calling for increased efforts to observe the Arctic. An initiative within SAON (Sustaining Arctic Observing Networks) has recently been started and is trying to clearly justify Arctic monitoring actions by performing a comprehensive Arctic Observation Systems value tree analysis. The Assossment framework and top of the tree has been developed by a workshop in jammary. The operating report is published on the SAON web. This work has only been started and needs new the next step. Sustaining and extending the Arctic Observing system becomes using it is not account to the step of observations can be made more explicit. It also helps to focus efforts on areas with most impact for policy goals. For this value tree to reach the lower level, it needs to be assossed from the bortone up connecting the information produced for key societal objectives to the underlying sorvices and observation data sources.

Sustainability is a key concept

https://www.arcticobserving.org/images/pdf/misc/STPI-SAON-International-Arctic-Observations-Framework-Report-2017.pdf

Arctic Science Ministerial

Polar Orgs & Cyberinfrastructure

- Arctic Data Committee
- SCADM
- SOOS
- GCW
- GEOCRI
- AC WGs
- Arctic SDI
- Polar View

• ...

S OS GCW

YOPP

GEO GROUP ON EARTH OBSERVATIONS

IARPC

Montreal 16-18 Sept. 2017

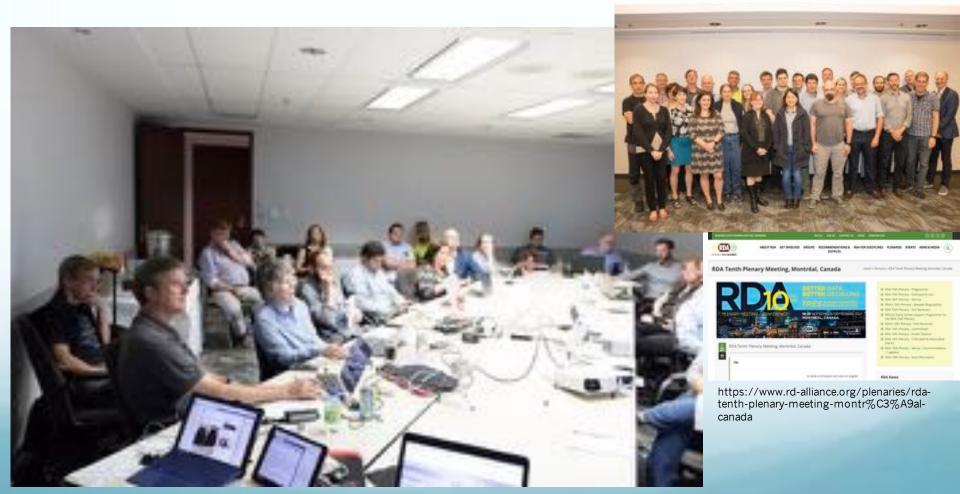
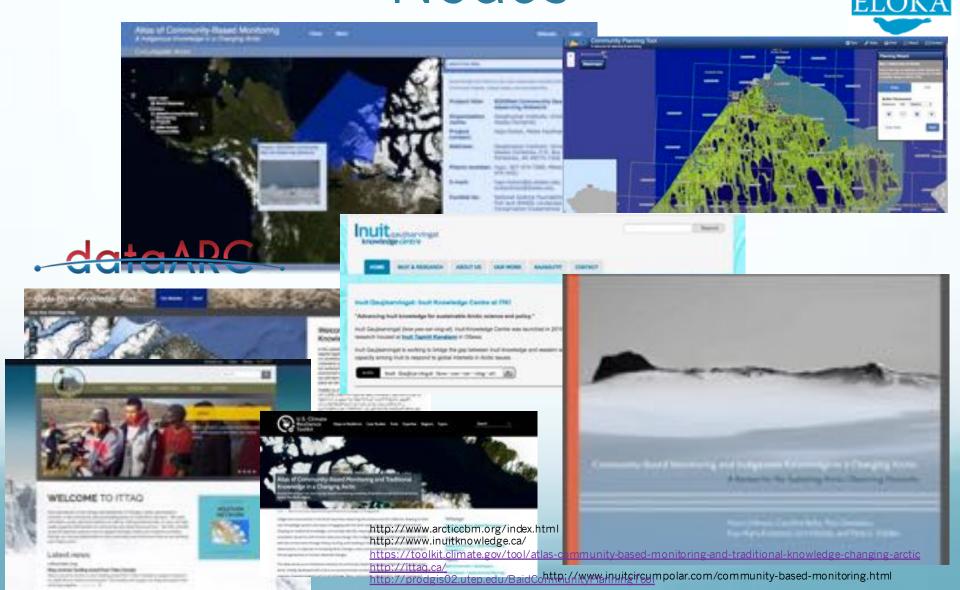


Photo credits: Marten Tacoma

National/Regional Hubs



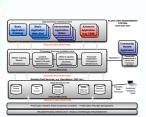
The Canadian Consortium for Arctic Data Interoperability

Local Community Hubs and Nodes

Community Driven Monitoring Workshop, Québec

- Interest in building bottom-up networks
- Investment in community capacity and infrastructure needed
- Interoperability across technical platforms
- Major issues around data sharing are social/political rather than technical

Workshop on Community Based Monitoring held at Arctic Change, 11,12 December



Indigenous and Community-Based Data/Information Platforms

http://eloka-arctic.org/

http://nunaliit.org/

https://www.smartice.org/

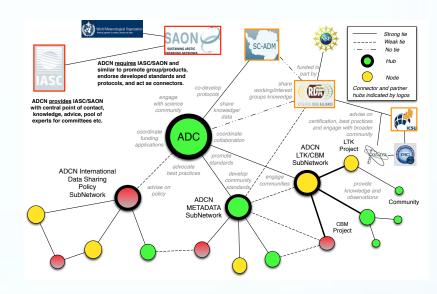
https://arcticeider.com/siku

https://enuk.eco/

https://www.leonetwork.org

Global Cyberinfrastructure & Orgs

- WMO
- GEO
- GOOS. IODE
- •
- RDA
- WDS
- CODATA
- IODE (<u>SeaData</u>(Net)Cl



Selected Recent Developments

Mapping the Data Ecosystem

Network Systems Science and the Need for a Distributed System

- Need to guide the design of a robust network that achieves the Vision – pragmatic, Agile
- Robust networks include <u>multiple</u> *<u>hubs*</u> and less connected nodes – "loose ties" + "hub and spoke

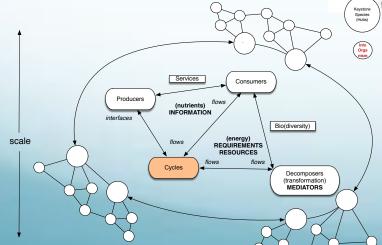
Pulsifer, P. L., Yarmey, L., Godøy, Ø. et al. (2014). Towards an International Polar Data Coordination Network. *Data Science Journal*, 13, 94–102. doi:http://dx.doi.org/10.2481/dsj.IFPDA-16

Mapping and Understanding the Data Ecosystem

Title: Reports for Location: FNI: Postdoctoral Fellow (Arctic Octo a-Conjentora Scientist) Professor Paul Arthur Berkston and Dr. Pytes Rubbler Historia School of Law and Opportuory, Tufts University 14 Months (auth occabile establish)

POSTDOCTORAL FELLOW

Antic Data e-Cosystem Scientist


BACKGROUND OF FLETCHER SCHOOL OF LAW AND DIFFLORANCY AT TUFTS UNIVERSITY

The Tletcher School is committed to educating in an inclusive and supportive environment that sentences students, experience of national origin, intigion or observable status. At The Tetcher School, for more than 10 years, we have tried in Tense the world. "Our air in its program or greaters to be precisionen in every demonstration of international interfaces, reconnects, finance, diplomatic hotory, politics, outpure, security and many other disciplines. The challenges

Fopposition, judges, diplomats, sensor elogeneric officials. The Fietcher School

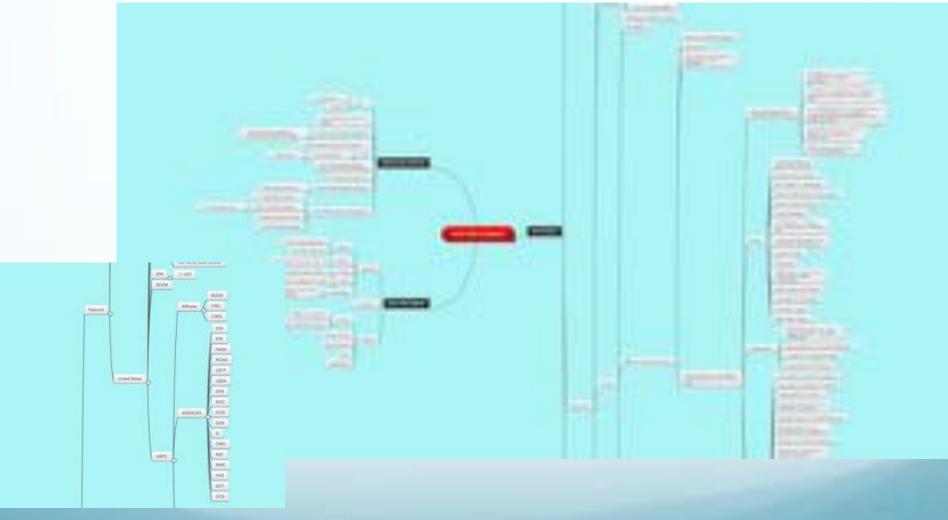
Dr. Katia Kontar

Information Ecology to Map the Arctic Information Landscape

Peter L. Pulsifer, Yekaterina Kontar, Paul Arthur Berkman, D.R. Fraser Taylor

12.1 Introduction

Government involves processes of interaction, dialogue, negotiation and decision-making among many actors involved in the development of social norms and institutions. Understanding and addressing the values, key priorities, and common interests of actors is critical to effective governance that balances societal well-being, environmental protection and commonic prosperity across generations. This is particularly challenging in the Arctic region due to the complexity of the region in the face of significant environmental, economic


and an paper our charge color. For the second bright for the seeing of the 60 is forcion, famous for the 67 and an injury exten, the se

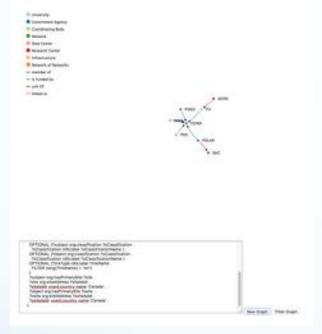
Live of date, the concept of tragging the latest code consistent were presented in the Previous Previous has been changed at the feature mount of the feature and the Previous Previous team and other inflations public originations and all the "

"And transport designed. Been public with 15th and the previous previous and any other provides or transport metals and to the feature and they are controlled to the previous metals and to the feature and the previous provides or transport metals are to the feature and the previous provides or transport metals are to the feature provides and the feature provides or transport metals are to the feature provides are to the feature provides are the feature provides are to the feature provides are the feature provide

to the second technic commissions a february and and existing to the second to second be considered as using \$19900.

Preliminary Map

A group like IARPC in the U.S. has its own data ecosystem


From Map to Model

Underlying Database - LOD

```
EF MASA
<4547a1d8-1d88-4216-abch-ef5cb1cc8783>
   rdfs:type org:OrganizationalUnit :
   rdfs:label "MASA" :
   rdfs:comment "National Aeronautics and Space Administration (NASA)":
   foaf:homepage <https://www.nasa.gov/> 1
   ore:hasPrimarySite <4547ald8-ld88-4216-abcb-efScblcc8783.site> :
   org:classification_pdesclassification:governmentAgency
                                                                       pdes:fundedBy owl:inverseOf pdes:funds .
   org:unitOf <378eac88-ace2-4cd7-a627-b8a62ff88fle> ;:
                                                                       pdes:funds owl:inverseOf pdes:fundedBy .
   pdes:funded8y <378aac88-aee2-4cg7-a827-b8a62ff88fle> .
                                                                       #Start definition of organization classification schema
                                                                       <a href="http://example.org/pdes-organization-classifications#">http://example.org/pdes-organization-classifications#></a>
<4547ald0-1d00-4216-abcb-ef5cblcc8783.site>
                                                                         a skos: ConceptScheee;
   a org:5lie;
                                                                           rdfs:isDefinedBy <a href="http://example.org/pdes-organization-classifications#">http://example.org/pdes-organization-classifications#>;</a>;
   org:siteAddress <4547aid@-id@0-4216-abcb-ef5cbicc8783.s
                                                                           rdfs: Label ""Polar Data Ecosystem Organization Classification Schema"";
                                                                           oct:hasVersion ""8.0.1"" .
<4547ald0-ld00-4216-abc0-ef5cblcc8783.site.card>
                                                                       pdesclassification:networkOfMetworks
   a yeard: Address ;
                                                                         a skos:Concept;
   vcardicountry-name "United States" 1
                                                                           skos) imScheme <ahttp://example.org/pdes-organization-classifications#>i
   ycard:postal-code "28546";
                                                                           rdfs; label ""Network of Networks" pen.
   ycard:region "District of Columbia";
                                                                       pdesclassification:systemOfSystems
   yeard:locality "Washington" ;
                                                                         a skos:Concept;
   vcard:street-address "300 E. Street SW, Suite SR30"
                                                                           skos:imScheme *http://example.org/pdes-organization-classifications#>:
                                                                           rdfs: label """System of Systems"""Ben.
BE NSIDE
<d345e52c-3a64-43cc-9cc2-6b1e55df2384>
                                                                       pdesclassification:network
                                                                         a skos:Concept;
   rdfs:type org:Organization :
                                                                           skos: inScheme <a href="http://example.org/pdes-organization-classifications#">http://example.org/pdes-organization-classifications#>:</a>
   rdfs:label "MSIDC" ;
                                                                           rdfs: label ""Network" "gen.
   rdfs:comment "National Snow and Ice Data Center (NSIDC)
   foaf:homepage <https://nsidc.org/> :
                                                                       pdesclassification: infrastructure
   org:classification pdesclassification:dataCenter;
                                                                         a skos:Concept;
                                                                           skos:inScheme <a href="http://example.org/pdes-organization-classifications#>:">http://example.org/pdes-organization-classifications#>:</a>
   org:hasPrimarySite <d345e52c-3a64-43cc-9cc2-6b1e55d1238
                                                                           rdfs: label ""Infrastructure" Ben.
   pdes:fundedBy <4547ald8-ld88-4216-abcb-ef5cblcc8783>;
   org:nemberOf <b121223c-cbfd-4db8-bfbc-e6f8927723b5+ :
                                                                       pdesclassification:dataCenter
                                                                         a skos:Concept;
   pdes:funded8y <2da7d57b-8afe-47ce-b829-3284a43a4c52> .
                                                                           skps:im5cheme <http://example.org/pdes-organization-classifications#>;
                                                                           rdfs: label ""Data Center""Den.
```

Dynamic Queries

Canada

Finland

Belgium

By Country

USA

Funding Ecosystem

POLDER

Polar Federated Search Working Group

- Joint SOOS, ADC, SCADM, SOOS effort
- Major support from Arctic Portal, SOOS, RBINS, NSIDC/ELOKA and all partners
- Concrete products under development
- Early use of products by community
- Chaired by Bricher, Smirnov, De Bruin

Polar Federated Search Working Group Draft Terms of Reference

Mission Statement:

The Polar Federated Search Working Group (PFSWG) is a collaboration between the Arctic Data Committee(ADC). Standing Committee on Antanciic Data Management (SCADM), and Southern Ocean Observing System (SOOS), to develop the tools and resources to support metabatic aggregation and federated search tools to improve the discoverability of polar science data.

Objectives

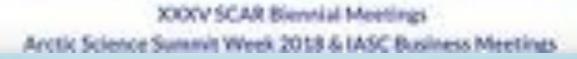
- PFS/HG will investigate the needs of the polar research community and opportunities for developing metadata aggregation and federated search
- PFSWG will advise ADC, SCADM, and SOOS on the best approaches to metadata aggregation federated search
- PFSWG will pursue funding and resource opportunities with other related groups to support metadata aggregation federated search
- Once funding/resources are found, PFSWG will act as a scientific advisory group for the developers
- PFSWG will maintain contact with the broader data management community to ensure that polar metadata aggregation and federated search is linked with other global initiatives and minimizes duplication of efforts

Vocabularies and Semantics Working Group

https://arcticdc.org/activities/core-projects/vocabularies-and-semantics-wg

III before (year)
 IV standary

Indigenous Data



National Inuit Strategy On Research

Meetings

Arctic Observing Summit 1918 The Business Case of a pain-Arctic Observing System Oness, Surfamiliand 34 - 26 Arcs 2018

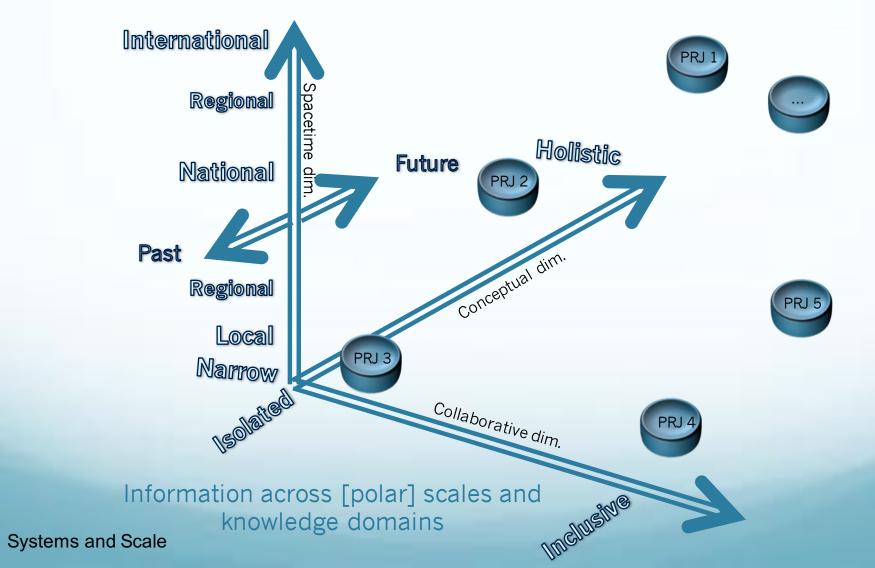
This holds Discovering Summer (ACD) is a singular control that a recompany control of her guidance for the dropp implement attachments and successful and the control of the guidance for the dropp implement and control of the control of the ACD provide a physicism of a region and control of the ACD control of the ACD provide a physicism of the control of the ACD control of

ARCTICDATACOMMITTEE

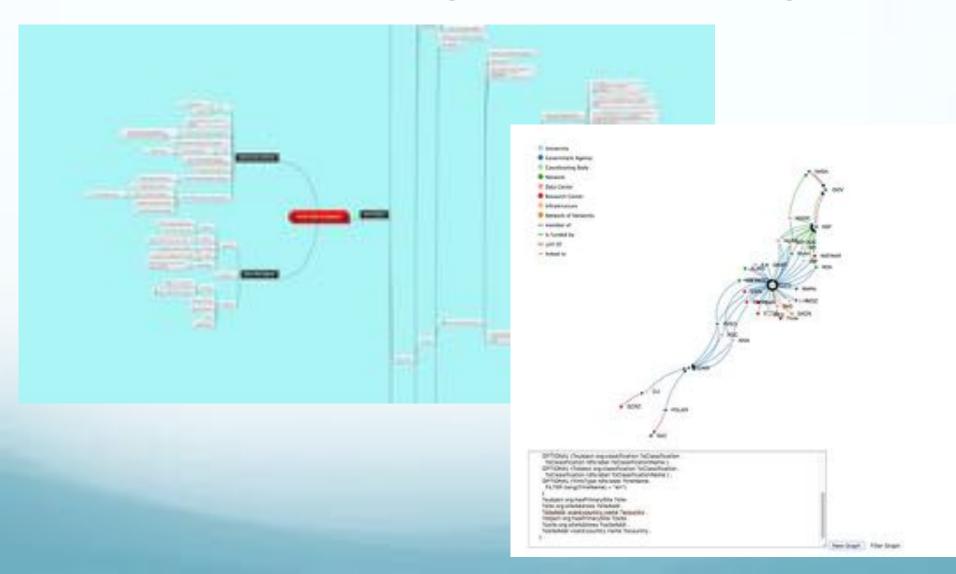
Arctic Data Committee Annual Meeting:

Geneva, Switzerland, November 2018

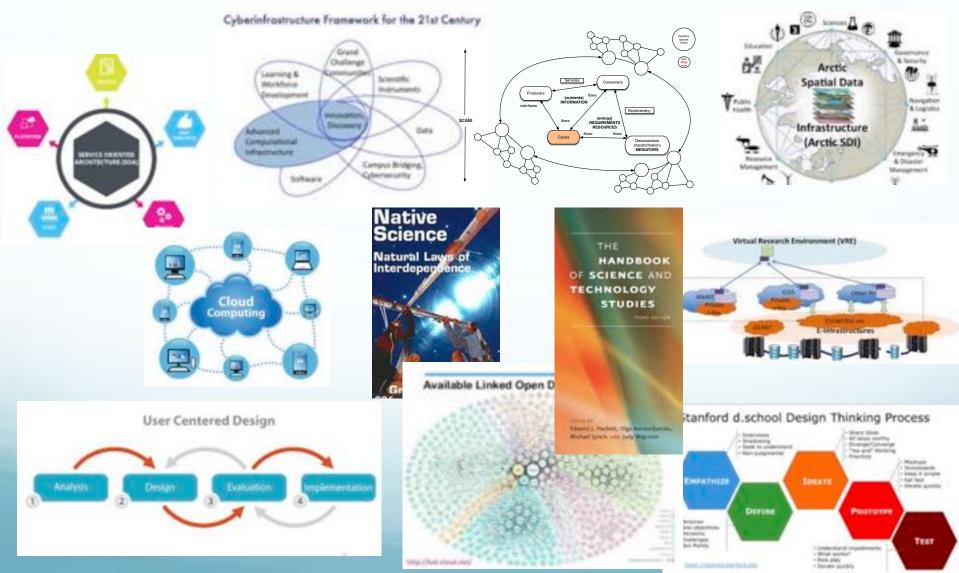
NOGETHORNA COMMISSION NAME AND A PART RESTORMED BY SOMEON DESIGN

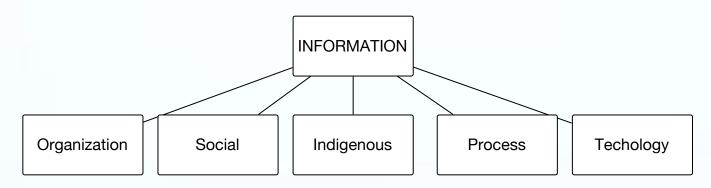


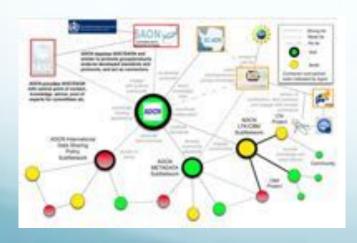
Arctic Science Ministerial



Challenges


Domain Complexity


Community Complexity



Socio-Technical Model Complexity

Frames

Coordination Capacity

 Limited number of people in the community who are able, resourced, willing or qualified to lead or assist with coordination and management of complexity at a <u>community</u> scale

The Way Forward

Establishing Frames and Working Models

Learning from Robotics

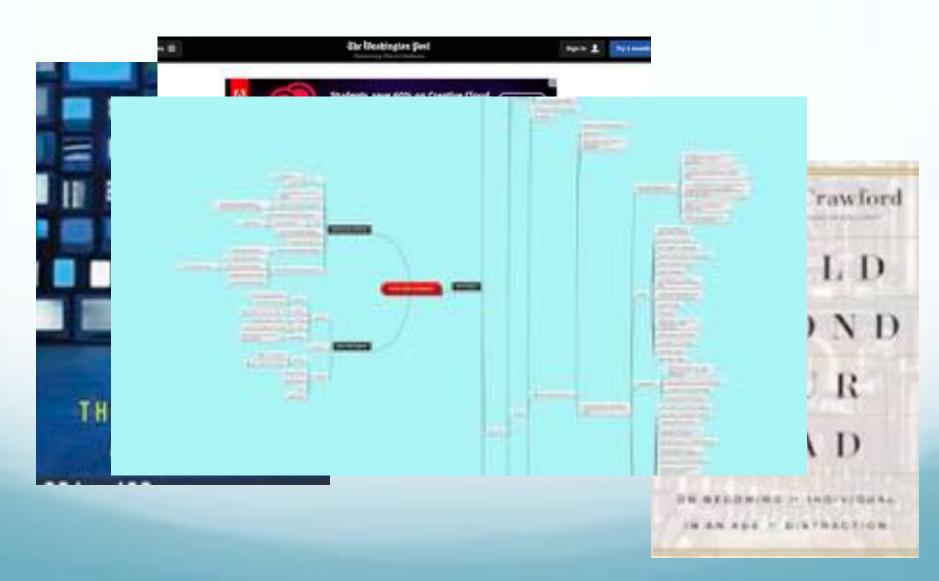
Structure, Agency and Identity

Agency "freedom"

Constrained Freedom

Structure "constraint"

Individual identity


Funding

Collective identity

"if all you have is a hammer, everything looks like a nail"

Abraham Maslow's The Psychology of Science, published in 1966.

Attention

PDPS

- Priorities?
- Bottom Up vs. Top Down?
- Individual vs. Collective?
- Connection to other scales and "non-polar" organizations?
- Sustainability?

Day 1

- Examples of Cyberinfrastructures and Initiatives
- Setting the Context and Introduction to Use Cases
- Lightning talks